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A simple expression to calculate the shape factor of hard bodies is proposed. Introducing this 
factor in the Boublik equation of state, very good results are obtained for hard dumbells and 
more complicated systems of linear homonuclear hard fused spheres. Agreement with available 
Monte Carlo results are also satisfactory enough for heteronuclear molecules. Furthermore, the 
new expression is reduced to the classical shape factor for hard convex bodies and provides a 
common basis to manage to concave and convex hard bodies. 

I INTRODUCTION 

In the last years, a considerable interest has been devoted to the properties 
of systems composed of two or more hard fused spheres. Indeed, these 
systems can explain the main features of the diffraction pattern of molecular 
liquids.' Furthermore, this model has been used recently as a reference 

t Present address: Univ. Complutense; Fac. Ciencias Quimicas; Dpto. Quimica Fisica; 
Madrid-3 ; Spain. 
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system in different treatments of perturbation applying to 
homonuclear diatomic molecules. However, even for the simplest body 
composed of hard fused spheres : hard dumbell, proposed analytic equations 
for these systems show several defects: either the equations do not cover 
the complete range of reduced elongations and den~i t ies ,~  or are an extension 
in some artificial way of equations for hard convex bodies,6 whose properties 
are well-known, or the coefficients have no clear physical meaning.7 In 
this paper we propose in section I1 a simple formula which is a generalization 
of the accurate Boublik formulae8- for spherocylinders. Application to 
homonuclear and heteronuclear hard spheres is presented in section I11 
and compared with the available Monte Carlo results. Finally, we will 
discuss an interesting suggestion for hard bodies proposed by Nezbeda 
et al." in the light of the new formula. 

II THEORETICAL 

The point of departure is the well known Boublik equation for hard-convex 
bodies : 

(1) 
1 3ay + 3a2y2 + py3 z=-----+- 

1 - Y (1 - YI2 (1 - Y I 3  
where y = pV is the reduced density and a = R S / 3 V .  V, S and R mean, 
respectively, volume, surface, and (4n)- times mean curvature of convex 
body. Besides 

p =  - a' (2) 

p =  - a(6a - 5 )  ( 3 )  

for the different variants of Boublik 
It is easy to verify the parameter a can be written as: 

(4) 
1 (a V/dU) . (82  V / d O 2 )  a = -  
3n V 

for spherocylinders and spheres of diameter equal to u. However, we can 
see that, for example, there is a discontinuity in the second derivative for 
hard dumbells at o = L, being L the separation between the centers, since: 

X 0 3  

3 
v = -  L > O  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
8
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



EQUATION OF STATE OF FUSED HARD SPHERES 185 

On the other hand, we can think about the formula (5) as the volume of a 
scaled particle growing from two isolated points, separated at a distanceL, 
to a hard dumbell of diameter (T. If we think that formula (1) can be derived 
in a way related to scaled-particle-theory (SPT),’ we may conclude that 
prescription (4) is the right way to calculate u for hard dumbells and also 
for more complicated systems of hard fused spheres. We postulate further 
that equation (5a) is applied even for (T = L, 1.e. L* = L/(T = 1, for taking 
(i32V/i3a2) in the prescription (4). 

Ill APPLICATION TO HARD FUSED SPHERES 

a Hard dumbell systems 

In this case, with the prescription (4): 

(L* + l)(L*/2 + 1) 

12 1 + 3L*/2 - L*3 
U =  

This result has the same form as the previous one written down by Boublik 
and Nezbeda.6 But, an important difference remains: the circumscribed 
spherocylinder must be used in Ref. 6 in order to obtain the mean curvature. 
This choice of a second model is arbitrary.” No second model is used in 
our formulation framework. 

Second and third reduced virial coefficients are given by: 

(1 + 3u) B* - ~ 

4 2 -  

(1 + 6a + 3u2) 
16 B: = 

In Table I, the results are compared for B: 

(7) 

and Bj  computed from 
formulae (6)-(7) and Tildesley and Streett results’ with recent results of 
simulation. Prior data were compared in Ref. 6.  Tildesley and Streett results 
are slightly better for 8; and this is not strange because they fit their values 
of coefficients to B t ,  but our results are in general very good for B: and BT. 
This agreement is very important because Barboy and Gelbart13 have 
shown that an expansion in y/(l - y) converges very quickly and three 
terms give very good results. In fact, formula (1) might be seen as a Barboy- 
Gelbart expansion with a final term approximating the sum of terms higher 
than the third one. 

In Table 11, a few selected results are given which are obtained from Eqs. 
(4) and (1). As Boublik and Nezbeda6 have pointed out, closure (2) is 
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TABLE 1 

Values for the second and third virial coefficient of hard dumbells. 
Experimental values are taken from Ref. (7), except the marked 
one with asterisk which come from (5) 

L' B: s: 
This 
work 

0.2 1.014 
0.4 1.054 
0.6 1.120 
0.8 1.222 
1.0 1.375 

Ref. This 
(7) exp. work 

1.021 1.014 0.637 
1.055 1.053 0.697 
1.115 1.119 0.750 
1.214 1.216 0.864 
1.364 1.357* 1.047 

I .36l 

~ 

Ref. 
(7)  exp. 

0.658 0.639 
0.706 0.684 
0.784 0.757 
0.908 0.878 
1.092 1.058 

TABLE I1  

Values for the compressibility factor from Eq. (4). The 
rest id. as Table 1. 

~ ~~ 

L* pd' z(Eq. 2) z(Eq. 3) 2, .p 

0.2 0.2 I .56 I .56 
0.5 3.31 3.30 
0.9 10.98 10.91 

0.6 0.4 2.77 2.75 

0.8 9.15 8.80 

1.0 0.2 1.80 1.80 
0.5 4.57 4.40 
0.9 18.02 15.37 

1.56 f 0.03 
3.36 0.07 

11.17 & 0.22 
2.78 0.06 
2.76 f 0.02 (*) 
9.23 0.18 
9.14 f 0.06(*) 
1.79 +_ 0.04 
4.62 f 0.09 

18.06 0.36 

excellent for this type of systems. The agreement with Eq. (3), which is slightly 
better than (2) for spherocylinders (9), is less satisfactory and fails at high 
densities and elongations. 

b 

Perhaps, the most interesting point of Eq. (4) is the easy extension to more 
complicated systems than hard dumbells. For a system composed of three 
homonuclear hard spheres of diameter u and centers equally spaced to a 
distance L, Eq. (4) produces: 

Three and more homonuclear hard fused spheres 

(1 + L*)(l + 2L*) 
1 + 3L* - L*3 

a =  
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EQUATION OF STATE OF FUSED HARD SPHERES 187 

In our knowledge, the only available simulations for these systems are 
those of Streett and Ti lde~ley’~  for pa3 = 0.897, and L* = 0.4485. The 
results are shown in the second line of Table IV and will be discussed below. 

For a general case, namely, N hard fused spheres of radius a and whose 
outermost centers are separated to a distance 1, the result is: 

[(l + L*)(L* + 2)] 
[2 + 3L* - L*3 / ( N  - 1)’l 

a =  

where 

A L* = - 
a 

(9) 

Now, when N goes to infinity, the value of a for a spherocylinder is recovered. 

c Heteronuclear hard fused systems 

Having account of additivity of volumes and linearity of derivatives, the 
most intuitive way to generalize Eq. (4) seems to be : 

where 
sums are extended to all the spherical zones forming the molecule. 

whose centers are separated a distance L. Then, formula (11) produces: 

means the volume of each spherical part of diameter ai,  and the 

The simplest case to be considered is two spheres of diameter a, and ya, 

(12) 
(1 + y 2  + 2L: + 2yL:Xl + y + L: + L:) 

2[(1 + y 3 )  + 3(LT + y2Lt)  - 4(Lt3 + Lf”] 
C i =  

where LT = 2LJa and L ,  and L2 are the distances in which the intersecting 
plane of the two spheres divides the distance L. 

Results are shown in Table 111 and compared with simulation data from 
Jolly et ~ 1 . ’ ~  Agreement is, in general, good enough within the experimental 
error of 5 % but worse for molecules with a great ratio L,/L,. Agreement is 
better for virial coefficients than for equation of state. This fact suggests 
Boublik equation is not so accurate in this case but closure (2) seems again 
to be more adequate. In any case, formula (11) provides more accurate 
results than any other formula applied to heteronuclear molecules with the 
exception, in some cases, of zerolh-order term in Perram-Morriss 
perturbation theory . 
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TABLE 111 

Virial coefficients and equation of state for heteronuclear hard dumbells. Experimental results 
from Ref. (14). 

1.5 0.75 1.062 1.080 0.610 0.615 0.4 2.64 2.64 2.75 3.50 
2.58" 

0.7 6.18 6.09 6.45 

1.5 1.0 1.157 1.162 0.590 0.598 0.4 2.84 2.82 2.93 1.91 
0.7 6.93 6.68 7.13 

1.8 0.9 1.032 1.063 0.617 0.615 0.4 2.58 2.58 2.68 5.48 
0.7 5.95 5.91 6.34 

1.2 0.6 1.086 1.087 0.605 0.609 0.4 2.69 2.68 2.78 1.88 
0.7 6.36 6.24 6.51 

' Non-cubic box. 

Extension to linear molecules x-y-x with cry = yo, is also very easy and 
results are summarized in Table IV in comparison with available MC 
results.12 Calculated values from Eq. (2) are within the experimental error 
of 5 % and are much better than for Eq. (3) except in the case y = 1. 

TABLE IV 

Virial coefficients and compressibility factors for three hard fused 
spheres (L* = 0.4485, p* = 0.897). Experimental results from Ref. (12). 

i' SL B 2 d  B2e.D Z(Eq. 2) Z(Eq. 3) Z, , ,  

516 1.3157 1.213 1.210 14.48 13.22 14.84 
I 1.2184 1.164 1.153 13.54 12.62 12.84 
716 1.1378 1.103 1.114 12.43 11.89 12.88 

IV FINAL DISCUSSION AND CONCLUSIONS 

An interesting suggestion was proposed by Nezbeda et a1." This suggestion 
is that for hard spheres ( H S ) ,  hard dumbells ( H D )  and hard spherocylinders 
(SC) at the same density and equal elongation L for the dumbell and the 
spherocylinder : 

ZHS 5 Z H D  5 zsc 
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We consider here only the second inequality, (the first is proved enough), 
in relation to formula (4). According to this, values for uV and u2V2 are the 
same for both bodies since for the SC: 

(1 + L*)(l + L*/2) 
(1 + 3L*/2) usc = 

Nevertheless, the values for (1 - y)-", n = 1,2,3,  are greater for sphero- 
cylinders because of its greater volume, and the closure term that would be 
greater for dumbells at some densities is much smaller than the other terms 
for all the densities with physical meaning. 

Therefore, Eq. (4) does not only provide a basis for general equations of 
hard bodies-fused spheres and convex bodies-but also it  holds an in- 
teresting conjecture useful for testing simulation experiments, indirectly. 

The simple form of the expression proposed in this paper, with good 
results in every case, suggests that application to more complicated systems 
could be instructive. In fact, very good results are obtained when it is applied 
to mixtures of hard dumbellsL5 and to the relatively simple nonlinear 
molecule of propane.' 
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